

Math 115 Math 107
M - Th
You must also have access to Canvas
and regular access to the internet.
Max hours You can miss is about
6 hours.

Simplify:
$$2^{3} - (-3)^{2}$$

 $= 8 - 9$
 $= 8 + (-9)$
 $= -1$
Simplify: $(-5)^{2} - 4(-1)(-4)$
 $= 25 - 4(-1)(-4)$
 $= 25 - 16 = 9$

Simplify:

$$-\left|-12\right| - (-3)(-2)^{2}$$

 $= -12 - (-3) \cdot 4$
 $= -12 - (-12)$
 $= -12 + 12$
 $= 0$ Do not
Use Ø For
 $Eero.$
Simplify:
 $\int (-6)^{2} + (-8)^{2}$
 $= \sqrt{36 + 64}$
 $= \sqrt{100}$
 $= 10$

Simplify:

$$\frac{5\cdot3}{2\sqrt{100}} + 2(-7) = \frac{15}{2\cdot10} + (-14) + \frac{3}{2} + \frac{(-14)}{2(-7)} + \frac{(-14)}{2(-7)} + \frac{(-14)}{2(-7)} + \frac{(-14)}{\sqrt{9}} + \frac{(-14)}{\sqrt{25}} + \frac{(-14)}{\sqrt{9}} +$$

Simplify

$$\frac{-4(5-4^{2})+\sqrt{(-5)^{2}}}{(-3)^{4}-(-9)^{2}} = \frac{-4(5-16)+\sqrt{25}}{81-81}$$

$$= \frac{-4(-11)+5}{0}$$

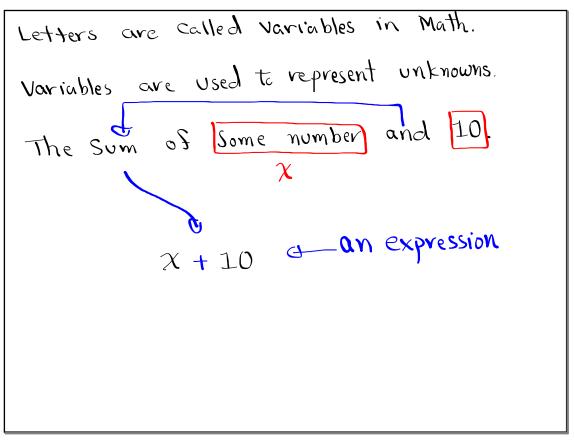
$$= \frac{-4(-11)+5}{0}$$

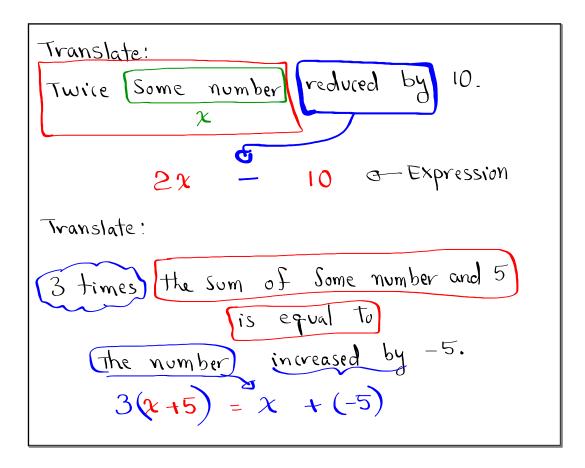
$$= \frac{-49}{0} \quad \text{undefined}$$

Simplify:

$$\frac{10^{2} + (-4)^{3} - (-6)^{2}}{(-3)^{2} \cdot \sqrt{64} + (-2)^{3} \cdot |-\sqrt{81}|}$$

$$= \frac{100 + (-64) - 36}{9 \cdot 8 + (-8) \cdot |-9|}$$


$$= \frac{36 - 36}{12 + (-8) \cdot |-9|}$$


$$= \frac{36 - 36}{12 + (-8) \cdot 9}$$

$$= \frac{0}{72 + (-72)} = \frac{0}{0}$$

$$= \frac{0}{72 + (-72)} = \frac{0}{0}$$

$$= \frac{0}{72 + (-72)} = \frac{0}{0}$$

Mathematical Expression:
It is a Combination of numbers, operations,
and Variables. NO = Sign

$$3\chi - 5$$
, $2(\chi - 4) + 7$, $\sqrt{b^2 - 4uc}$, $\frac{\chi^2 + 3\chi}{\chi - 5}$
 $-3\chi^2 + 10\chi - 4$, $\frac{J_2 - J_1}{\chi_2 - \chi_1}$
For now, we evaluate mathematical
Expressions.

Evaluate
$$x^{2}-10x + 5$$
 for $x=0$.
Plug in 0 for x, then do order of
operations
 $(0)^{2}-10(0) + 5 = 0 - 0 + 5$
 $= 5$
Evaluate $-3x - 6$ for $x=-2$.
 $-3x - 6 = -3(-2) - 6 = 6 - 6 = 0$

Evaluate
$$-4\chi^2 - 10\chi - 8$$
 for $\chi = -3$.
 $-4\chi^2 - 10\chi - 8 = -4(-3)^2 - 10(-3) - 8$
 $= -4 \cdot 9 - 10(-3) - 8$
 $= -36 + 30 - 8$
 $= -6 - 8$
 $= -14$

Evaluate
$$\frac{\chi^2 - 3\chi}{\chi + 3}$$
 for
 $x = 0$ $\chi = 3$ $\chi = -3$
 $= \frac{0^2 - 3(0)}{0 + 3}$ $= \frac{3^2 - 3(3)}{3 + 3}$ $= \frac{(-3)^2 - 3(-3)}{-3 + 3}$
 $= \frac{0 - 0}{3}$ $= \frac{9 - 9}{6}$ $= \frac{9 + 9}{0}$
 $= \frac{0}{3}$ $= \frac{9 - 9}{6}$ $= \frac{18}{0}$ undefined
 $= \frac{18}{0}$ $=\frac{18}{0}$ $=\frac$

Evaluate
$$-b - \sqrt{b^2 - 44c}$$

for $a = 1$, $b = -6$, and $c = 9$.
 $-b - \sqrt{b^2 - 44c} = -(-6) - \sqrt{(-6)^2 - 4(1)(9)}$
 $= 6 - \sqrt{36 - 36}$
 $= 6 - \sqrt{0}$
 $= 6 - \sqrt{0}$

Evaluate
$$\frac{\chi^2 - 4\chi + 4}{\chi - 2}$$
 Sov
 $\chi = 0$
 $\chi = 0$
 $\chi = -1$
 $\frac{\chi^2 - 4\chi + 4}{\chi - 2}$ Sov
 $\chi = 2$
 $\frac{\chi = 2}{2^2 - 4(2) + 4}$
 $\frac{\chi = 2}{2^2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 4}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4}$
 $\frac{\chi = 2}{2 - 4(2) + 4}$
 $\frac{\chi = 2}{2 - 2}$
 $\frac{\chi = 2}{2 - 4}$
 $\frac{\chi = 2}{2 - 4$

Properties of real numbers:
(1) Commutative

$$a+b=b+a$$
, $a\cdot b=b\cdot a$
 $x+2=2+x$, $7\cdot(-5)=(-5)\cdot7$
(2) Associative
 $(a+b)+c = a+(b+c)$
 $(a\cdot b)\cdot c = a\cdot(b\cdot c)$
 $(x+s)+2 = x + (s+2)$
 $5\cdot(10\cdot x) = (5\cdot 10)\cdot x$

(3) Distributive

$$a(b+c) = a \cdot b + a \cdot c$$

 $u(x + 10) = 4 \cdot x + 4 \cdot 10$
 $-3(2x - 5) = -3 \cdot (2x) - (-3) \cdot 5$
(4) I dentity
 $a + 0 = a$
 $-10 + 0 = -10$
 $100 \cdot 1 = 100$

(5) Inverse	1
$O = (-\alpha) = O$	$\mathbf{a} \cdot \frac{1}{\mathbf{a}} = 1 \mathbf{a} \neq 0$
25 + (-25)=0	$8 \cdot \frac{1}{8} = 1$
$-\frac{2}{3} + \frac{2}{3} = 0$	$\frac{-3}{4} \cdot \frac{-4}{3} = 1$
Simplify 3(x+2)+	(-6)
= 3x + 3.2	t (-6) Distributive
$=3\chi + 6 +$	(-6)
$=3\chi + 0$	Inverse
- <u>3x</u>	Identity

Simplify, name the property used in the process

$$4\left(\frac{1}{4}x + 1\right) - 4$$

$$= 4 \cdot \left(\frac{1}{4}x\right) + 4 \cdot 1 - 4$$
Distributive
$$= \left(4 \cdot \frac{1}{4}\right)x + 4 \cdot 1 - 4$$
Associative
$$= 1 \cdot x + 4 \cdot 1 - 4$$
Inverse
$$= \chi + 4 - 4$$
Identify
$$= \chi + 0$$
Identify

Simplify

$$3(2x^{2} + 5x - 1) - 5(x^{2} + 3x - 1) - 2$$

Hint:
 $-3(2x^{2}) + 3(5x) - 3 - 5x^{2} - 5(3x) - 5(-1) - 2$
 $= 6x^{2} + 15x - 3 - 5x^{2} - 15x + 5 - 2$
 $= 1x^{2} + 0 + 0$
 $= \chi^{2} + 0 = \chi^{2}$

Find an expression in Simplest form for
the perimeter of the rectangle below

$$P=2L + 2W$$

$$V = 2(5x + 4) + 2(5x - 4)$$

$$= 2(5x) + 2 \cdot 4 + 2 \cdot (5x) - 2 \cdot 4$$

$$= (2 \cdot 5)x + 8 + (2 \cdot 5)x - 8$$

$$= 10x + 8 + 10x - 8$$

$$= 10x + 10x + 8 - 8$$

$$= 20x + 0$$

$$= 20x$$

Fake QZ
() Evaluate
$$x^{3} - y^{2}$$
 for $x = 4$, $y = -8$
 $x^{3} - y^{2} = (4)^{3} - (-8)^{2} = 64 - 64 = 0$
(2) Simplify: $\frac{\sqrt{100} - 2 \cdot 5}{\sqrt{25} - \sqrt{16} - 1}$
 $= \frac{10 - 10}{5 - 4 - 1} = \frac{0}{1 - 1}$
Indeterminate $y = \frac{0}{0}$